8.4 Properties of Rhombuses, Rectangles, and Squares

Before

You used properties of parallelograms.

Now

You will use properties of rhombuses, rectangles, and squares.

Why?

So you can solve a carpentry problem, as in Example 4.

Key Vocabulary

- rhombus
- rectangle
- square

In this lesson, you will learn about three special types of parallelograms: *rhombuses*, *rectangles*, and *squares*.

A <mark>rhombus</mark> is a parallelogram with four congruent sides. A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

You can use the corollaries below to prove that a quadrilateral is a rhombus, rectangle, or square, without first proving that the quadrilateral is a parallelogram.

COROLLARIES

For Your Notebook

RHOMBUS COROLLARY

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Proof: Ex. 57, p. 539

RECTANGLE COROLLARY

A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Proof: Ex. 58, p. 539

SQUARE COROLLARY

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Proof: Ex. 59, p. 539

The *Venn diagram* below illustrates some important relationships among parallelograms, rhombuses, rectangles, and squares. For example, you can see that a square is a rhombus because it is a parallelogram with four congruent sides. Because it has four right angles, a square is also a rectangle.

EXAMPLE 1 Use properties of special quadrilaterals

For any rhombus *QRST*, decide whether the statement is *always* or *sometimes* true. Draw a sketch and explain your reasoning.

a.
$$\angle Q \cong \angle S$$

b.
$$\angle Q \cong \angle R$$

Solution

a. By definition, a rhombus is a parallelogram with four congruent sides. By Theorem 8.4, opposite angles of a parallelogram are congruent. So, $\angle Q \cong \angle S$. The statement is *always* true.

b. If rhombus QRST is a square, then all four angles are congruent right angles. So, $\angle Q \cong \angle R$ if QRST is a square. Because not all rhombuses are also squares, the statement is *sometimes* true.

EXAMPLE 2 Classify special quadrilaterals

Classify the special quadrilateral. Explain your reasoning.

Solution

The quadrilateral has four congruent sides. One of the angles is not a right angle, so the rhombus is not also a square. By the Rhombus Corollary, the quadrilateral is a rhombus.

1

GUIDED PRACTICE

for Examples 1 and 2

- 1. For any rectangle *EFGH*, is it *always* or *sometimes* true that $FG \cong GH$? *Explain* your reasoning.
- **2.** A quadrilateral has four congruent sides and four congruent angles. Sketch the quadrilateral and classify it.

DIAGONALS The theorems below describe some properties of the diagonals of rhombuses and rectangles.

THEOREMS

For Your Notebook

THEOREM 8.11

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\Box ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Proof: p. 536; Ex. 56, p. 539

THEOREM 8.12

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\Box ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$ and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Proof: Exs. 60–61, p. 539

THEOREM 8.13

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Proof: Exs. 63–64, p. 540

EXAMPLE 3

List properties of special parallelograms

Sketch rectangle ABCD. List everything that you know about it.

Solution

By definition, you need to draw a figure with the following properties:

- The figure is a parallelogram.
- The figure has four right angles.

Because *ABCD* is a parallelogram, it also has these properties:

- Opposite sides are parallel and congruent.
- Opposite angles are congruent. Consecutive angles are supplementary.
- Diagonals bisect each other.

By Theorem 8.13, the diagonals of *ABCD* are congruent.

Animatea Geometry at classzone.com

GUIDED PRACTICE

for Example 3

3. Sketch square *PQRS*. List everything you know about the square.

BICONDITIONALS Recall that biconditionals such as Theorem 8.11 can be rewritten as two parts. To prove a biconditional, you must prove both parts.

Conditional statement If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

Converse If a parallelogram is a rhombus, then its diagonals are perpendicular.

PROOF

Part of Theorem 8.11

PROVE THEOREMS

You will prove the other part of Theorem 8.11 in Exercise 56 on page 539. If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

GIVEN \blacktriangleright *ABCD* is a parallelogram; $\overline{AC} \perp \overline{BD}$

PROVE \triangleright *ABCD* is a rhombus.

Proof ABCD is a parallelogram, so \overline{AC} and \overline{BD} bisect each other, and $\overline{BX}\cong \overline{DX}$. Also, $\angle BXC$ and $\angle CXD$ are congruent right angles, and $\overline{CX}\cong \overline{CX}$. So, $\triangle BXC\cong\triangle DXC$ by the SAS Congruence Postulate. Corresponding parts of congruent triangles are congruent, so $\overline{BC}\cong\overline{DC}$. Opposite sides of a $\square ABCD$ are congruent, so $\overline{AD}\cong\overline{BC}\cong\overline{DC}\cong\overline{AB}$. By definition, ABCD is a rhombus.

EXAMPLE 4

Solve a real-world problem

CARPENTRY You are building a frame for a window. The window will be installed in the opening shown in the diagram.

- **a.** The opening must be a rectangle. Given the measurements in the diagram, can you assume that it is? *Explain*.
- b. You measure the diagonals of the opening. The diagonals are 54.8 inches and 55.3 inches. What can you conclude about the shape of the opening?

Solution

- **a.** No, you cannot. The boards on opposite sides are the same length, so they form a parallelogram. But you do not know whether the angles are right angles.
- **b.** By Theorem 8.13, the diagonals of a rectangle are congruent. The diagonals of the quadrilateral formed by the boards are not congruent, so the boards do not form a rectangle.

GUIDED PRACTICE

for Example 4

4. Suppose you measure only the diagonals of a window opening. If the diagonals have the same measure, can you conclude that the opening is a rectangle? *Explain*.

SKILL PRACTICE

- **1. VOCABULARY** What is another name for an equilateral rectangle?
- **2.** ★ **WRITING** Do you have enough information to identify the figure at the right as a rhombus? *Explain*.

EXAMPLES 1, 2, and 3on pp. 534–535
for Exs. 3–25

RHOMBUSES For any rhombus *JKLM*, decide whether the statement is *always* or *sometimes* true. Draw a diagram and *explain* your reasoning.

3.
$$\angle L \cong \angle M$$

4.
$$\angle K \cong \angle M$$

5.
$$\overline{JK} \cong \overline{KL}$$

6.
$$\overline{IM} \cong \overline{KL}$$

$$7.\overline{JL} \cong \overline{KM}$$

8.
$$\angle JKM \cong \angle LKM$$

RECTANGLES For any rectangle *WXYZ*, decide whether the statement is *always* or *sometimes* true. Draw a diagram and *explain* your reasoning.

9.
$$\angle W \cong \angle X$$

10.
$$\overline{WX} \cong \overline{YZ}$$

11.
$$\overline{WX} \cong \overline{XY}$$

12.
$$\overline{WY} \cong \overline{XZ}$$

13.
$$\overline{WY} \perp \overline{XZ}$$

14.
$$\angle WXZ \cong \angle YXZ$$

CLASSIFYING Classify the quadrilateral. *Explain* your reasoning.

15.

16.

17

18. USING PROPERTIES Sketch rhombus *STUV. Describe* everything you know about the rhombus.

USING PROPERTIES Name each quadrilateral—parallelogram, rectangle, rhombus, and square—for which the statement is true.

19. It is equiangular.

- **20.** It is equiangular and equilateral.
- 21. Its diagonals are perpendicular.
- **22.** Opposite sides are congruent.
- **23.** The diagonals bisect each other.
- **24.** The diagonals bisect opposite angles.
- **25. ERROR ANALYSIS** Quadrilateral PQRS is a rectangle. *Describe* and correct the error made in finding the value of x.

W ALGEBRA Classify the special quadrilateral. Explain your reasoning. Then find the values of x and y.

27.

29.

30. ★ **SHORT RESPONSE** The diagonals of a rhombus are 6 inches and 8 inches. What is the perimeter of the rhombus? *Explain*.

31. ★ MULTIPLE CHOICE Rectangle ABCD is similar to rectangle *FGHJ*. If AC = 5, CD = 4, and FM = 5, what is HI?

 \bigcirc 4

B) 5

(C) 8

(D) 10

M

RHOMBUS The diagonals of rhombus ABCD intersect at E. Given that $m \angle BAC = 53^{\circ}$ and DE = 8, find the indicated measure.

RECTANGLE The diagonals of rectangle *QRST* intersect at *P*. Given that $m \angle PTS = 34^{\circ}$ and QS = 10, find the indicated measure.

SQUARE The diagonals of square *LMNP* intersect at K. Given that LK = 1, find the indicated measure.

- **44.** $m \angle MKN$
- **45.** *m*∠*LMK*
- **46.** $m \angle LPK$
- **47.** KN
- **48.** *MP*
- **49.** *LP*

COORDINATE GEOMETRY Use the given vertices to graph \Box JKLM. Classify \Box JKLM and explain your reasoning. Then find the perimeter of \Box JKLM.

- **50.** J(-4, 2), K(0, 3), L(1, -1), M(-3, -2)
- **51.** *J*(-2, 7), *K*(7, 2), *L*(-2, -3), *M*(-11, 2)

- **52. REASONING** Are all rhombuses similar? Are all squares similar? *Explain* your reasoning.
- **53. CHALLENGE** Quadrilateral ABCD shown at the right is a rhombus. Given that AC = 10 and BD = 16, find all side lengths and angle measures. *Explain* your reasoning.

PROBLEM SOLVING

EXAMPLE 2

on p. 534 for Ex. 54

- **54. MULTI-STEP PROBLEM** In the window shown at the right, $\overline{BD} \cong \overline{DF} \cong \overline{BH} \cong \overline{HF}$. Also, $\angle HAB$, $\angle BCD$, $\angle DEF$, and $\angle FGH$ are right angles.
 - a. Classify HBDF and ACEG. Explain your reasoning.
 - **b.** What can you conclude about the lengths of the diagonals \overline{AE} and \overline{GC} ? Given that these diagonals intersect at J, what can you conclude about the lengths of \overline{AJ} , \overline{JE} , \overline{CJ} , and \overline{JG} ? Explain.

@HomeTutor for problem solving help at classzone.com

EXAMPLE 4

on p. 536 for Ex. 55 **PATIO** You want to mark off a square region in your yard for a patio. You use a tape measure to mark off a quadrilateral on the ground. Each side of the quadrilateral is 2.5 meters long. *Explain* how you can use the tape measure to make sure that the quadrilateral you drew is a square.

@HomeTutor for problem solving help at classzone.com

56. PROVING THEOREM 8.11 Use the plan for proof below to write a paragraph proof for the converse statement of Theorem 8.11.

PROVE $\triangleright \overline{AC} \perp \overline{BD}$

Plan for Proof Because ABCD is a parallelogram, its diagonals bisect each other at X. Show that $\triangle AXB \cong \triangle CXB$. Then show that \overline{AC} and \overline{BD} intersect to form congruent adjacent angles, $\angle AXB$ and $\angle CXB$.

PROVING COROLLARIES Write the corollary as a conditional statement and its converse. Then *explain* why each statement is true.

57. Rhombus Corollary

58. Rectangle Corollary

59. Square Corollary

PROVING THEOREM 8.12 In Exercises 60 and 61, prove both parts of Theorem 8.12.

- **60. GIVEN** \triangleright *PQRS* is a parallelogram. \overline{PR} bisects $\angle SPQ$ and $\angle QRS$. \overline{SQ} bisects $\angle PSR$ and $\angle RQP$.
 - **PROVE** \triangleright *PQRS* is a rhombus.

61. GIVEN \triangleright *WXYZ* is a rhombus.

PROVE \blacktriangleright \overline{WY} bisects $\angle ZWX$ and $\angle XYZ$. \overline{ZX} bisects $\angle WZY$ and $\angle YXW$.

- **62.** \star **EXTENDED RESPONSE** In *ABCD*, $\overline{AB} \parallel \overline{CD}$, and \overline{DB} bisects $\angle ADC$.
 - **a.** Show that $\angle ABD \cong \angle CDB$. What can you conclude about $\angle ADB$ and $\angle ABD$? What can you conclude about \overline{AB} and \overline{AD} ? Explain.

63. PROVING THEOREM 8.13 Write a coordinate proof of the following statement, which is part of Theorem 8.13.

If a quadrilateral is a rectangle, then its diagonals are congruent.

64. CHALLENGE Write a coordinate proof of part of Theorem 8.13.

GIVEN \triangleright *DFGH* is a parallelogram, $\overline{DG} \cong \overline{HF}$

PROVE \triangleright *DFGH* is a rectangle.

Plan for Proof Write the coordinates of the vertices in terms of *a* and *b*. Find and compare the slopes of the sides.

MIXED REVIEW

PREVIEW Prepare for Lesson 8.5 in Ex. 65.

65. In $\triangle JKL$, KL = 54.2 centimeters. Point M is the midpoint of \overline{JK} and N is the midpoint of \overline{JL} . Find MN. (p. 295)

Find the sine and cosine of the indicated angle. Write each answer as a fraction and a decimal. (p. 473)

Find the value of x. (p. 507)

68.

69.

70.

QUIZ for Lessons 8.3-8.4

For what value of x is the quadrilateral a parallelogram? (p. 522)

1.

2.

3

Classify the quadrilateral. Explain your reasoning. (p. 533)

4

5.

6.

